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TP 1. BASES D’ANALYSE DES CIRCUITS

Généralités — Rappels de bases

Théoréeme de superposition

Régime sinusoidal, impédances complexes
Les diagrammes de Bode

L’amplificateur opérationnel

L’amplificateur opérationnel: caractéristiques dynamiques




Généralités-Rappels : Dipdles passifs en série

Des dipoles sont ‘en série’ lorsqu’ils sont traversés par le méme courant.

1 R R U=U;+Up =RiI+R,[= (R +Ry)I=R ]
>{H "1
U, U, Reg=Ri+R; |
_—
U
p & G U=Uy+ Uy = [ 1des - frae=(s L) frae= [ rae
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—5 Ceq €1 Co “a=C 1,
I Ll IQ U:U]+U7:ng‘i‘L‘)g:(Ll“‘L‘))g:Lqu
-t Y Y e Y Y - dt “dt - dt dt
—_— —
U, U,
— —_
U L"eq_l‘l +L, ‘

Relations généralisables 4 N éléments.

Plusieurs dip6les de méme type en série peuvent se réduire a un seul élément.
Des résistances en série s'additionnent.
Des capacités en série s’additionnent ‘en inverse’.
Des inductances en série s'additionnent.

(’ordre des connexions est donc sans importance )
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Généralités-Rappels
Dipdles passifs en parallele

Dipdles ‘en parallele’ une méme tension est appliquée aux bornes des dipoles.

R
L == oLy Ly Ly
I R, R, R, R, R,
i+ _ 1.1 Ri R,
I R R, R & |Rg=p——p
2 Rz eq 1 2 R1+R2
dUu . du du
I=,+, =C;—+C,—=(C,; +C
e =(Cy+ z) Ceq— m

Ceq
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1 | I 1 |
[=L1+L, =—)Udt+—) Udt=(—+-—)) Udt=—-] Udt
= Toas ! fuas e Djvas

1

1

Legq

1 1
= — 4+ —
Ly L

&

1

eq

L,

q:

Li+L,

Ly L,

Plusieurs dip6les de méme type connectés en parallele peuvent se réduire a un

seul.

Des résistances en parallele ‘se somment’ en inverse.

Des capacités en paralléle s'additionnent.

Des inductances en parall¢le ‘se somment’ en inverse.

L'ordre de connexion des éléments en paralléle n'a pas d’importance.
p p p




Théoréme de superposition
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THEOREME DE SUPERPOSITION

On cherche a exprimer la tension U,.

Loi d’Ohm
U, -U, U, -U, -U

. . _ Y : ; s N
A RI I R_, iy Ri L[l 9

Loi de Kirchoff
Somme des courants qui ‘entrent’” dans le noeud A= 0

i]+f._1+i3=0

' Neeud A

U, -U,

R

U, -U,
+2

-

R,

_Us

L’Y
=0 — U :{—1+—

Sionpose R;=R,=R;=R

. U +U,
On obtient U, = %

1

R.R + — R,
RR,+RR.+RR, > ° RR,+RR,+R,R,

3

Tout circuit peut se résoudre en imposant la loi des mailles (somme des

tensions le long d’un parcours fermé =0 ) et la loi des noeuds (somme des
courants qui arrivent en un noeud =0 ), avec bien entendu les relations qui lient
courant et tension pour chaque composant.

Dés lors que le nombre d’équations indépendantes est égal au nombre
d’inconnues (tensions ou courants), le systéme peut se résoudre.

Cette approche peut s’avérer laborieuse dés que les circuits impliquent

plusieurs sources.
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THEOREME DE SUPERPOSITION

Cette approche est acceptable tant que le circuit est simple, et qu’il ne comporte pas
plus de 2 sources (nous n"aborderons pas les sources de courant).

Pour des circuits plus complexe, on utilise le théoréme de superposition qui s’énonce
comme suit :

Théoréme.

Dans un circuit linéaire, leffet de plusieurs sources indépendantes est obtenu par

la somme des effets de chaque source prise individuellement, lorsque toutes les

autres sont ‘désactivées’,

une source de tension nulle: court-circuit.

Une source de tension ‘désactivée’ correspond a OVIq)

Le théoréme de superposition énonce une propriété fondamentale des systemes
linéaires qui s’avere €tre un outil trés efficace pour résoudre simplement des
circuits non-triviaux:

En essence, le théoreme énonce que la réponse d’un systéme a une somme
d'excitations est égale a la somme des réponses dues a chaque excitation
prise separément.

Pour cela, il faut ‘annuler’ I’effet de certaines sources d’excitation.
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THEOREME DE SUPERPOSITION

Selon ce théoréme, ce circuit se résout également selon la décomposition :

Annulation U, | |R, R,

— O

R, |U. R, R,

Annulation U,

U=0 R,

Principe:

On décompose le circuit initial composé de deux sources en deux circuits
composés d’une source unique.

Dans cet exemple, I'effet sur Ug de la source de tension U, est déterminé en
annulant la source de tension U, qui sera remplacée par un court circuit.

De méme, l'effet sur Ug de la source de tension U, est déterminé en annulant
la source de tension U; qui sera remplacee par un court circuit.
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THEOREME DE SUPERPOSITION

U, RR, _
R*Rz R, +R -
+ = 3 2 3
& R,+R,
U,
RR,+RR, +RR,

2773

-

U, RR,
) R, + RR R +R,
° R +R
U,

_ s  RR
a&+a&+&&a’

Superposition des 2 contributions

Ug=Us+U.,

<

— []l R
RR,+RR,+RR, °
T
U
RR,+RR,+RR,

U,

3

Ry

On obtient le méme résultat

La somme de chaque contribution donne le méme résultat que la méthode

initiale.

Dans ce cas précis, I’avantage n’est pas évident, mais si par exemple on
décidait d’ajouter dans le circuit une source de tension supplémentaire (avec
une résistance par exemple), la resolution par superposition serait bien plus

simple.
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Régime sinusoidal et
Impédances Complexes
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GENERALISATION DE LA LOI D’OHM EN REGIME

SINUSOIDAL
i ->—| C

—

u
u(t)

ANYA

Excitation: i(t) = I sin(wt +¢,) = Réponse? u(t) = U sin(wt + ¢,)

En régime sinusoidal, on peut ‘maintenir’ la loi d’Ohm a 1 Z
condition d’exprimer les courants et les tensions avec des - —
nombres complexes. U

Dans ce cas, I'impédance Z (Ohm) représente une ‘résistance
complexe’

Losrqu’une tension sinusoidale est appliquée aux bornes d’une capacité ou
d’une inductance, le courant induit va subir un déphasage vis a vis de la
tension. Algébriquement, ceci s’explique par I’introduction de la function
dérivée (pour la capacité) ou intégrale (pour I’inductance) qui vont transformer
un sinus en cosinus et réciproquement.

Pour la capacité, le courant est déphasé de +90° vis a vis de la tension, tandis
que pour I‘inductance ce sera -90°

En régime sinusoidal on peut introduire la notion d’impedance notée Z, qui est
une notion généralisée de la résistance lorsqu’on utilise les nombres
complexes.

Cette impedance a donc non seulement un module, mais égalememt une phase.
Ces deux quantités peuvent dépendre de la fréquence d’excitation.
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Impédances complexes

La résistance, Ia capacité et Pinductance

R C L
1 _ -
7=—=_ Z = jol
Impédance réelle Impédance imaginaire Impédance imaginaire
Z(@)[ = R 12(@)| = — Z(w)| = ol
- Wl = wC —

m T
| Arg(Z(w))=0 | Arg(Z(w) = -5 Arg(Z(w)) =~

En notation complexe, pour les trois types de dipbles linéaires passifs, la loi
d'Ohm s’écrit en terme de phaseurs U = Z-1.

Le parametre Z est appelé impédance.
L'impédance d'une résistance est réelle positive.

L'impédance d'une inductance est purement imaginaire positive.
L'impédance d'une capacité est purement imaginaire négative.
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Impédances complexes

Les lois de Kirchhoff restent valables

Z,
Loi des mailles
=
—
Ui U,+U,+U,-U,=0
Z, U, U, Z,
U, Attention aux signes (sens des fléches) !
- Attention somme complexe !
L1
Z,
. Loi des noeuds
2
I —
I, S L+L+1,-1,-1,=0
I Attention aux signes (sens des fléeches) !

Attention somme complexe !

Loi des mailles:

Le long d'un trajet fermé, la somme complexe des phaseurs de tension est
nulle.

Loi des noeuds:

La somme complexe des phaseurs de courant qui arrivent en un noeud est
nulle.

Rappel:

Si une somme de grandeurs complexes est nulle, la somme des parties réelles
est nulle, de méme que la somme des parties imaginaires.
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Impédances complexes

Z3
I Zl Zz Z3
— 1= Lol
T A
7 7 eq 1
eq =24 ,
U

Important: La présence de capacités et d’inductances va modifier non seulement
Pamplitude des signaux électriques (courant, tension, charge) comme pour le cas de la
loi d’Ohm avec des résistances, mais également la phase entre ces sighaux.

L'impédance globale d'éléments en série (traversés par le méme courant) est la
somme des impédances de chaque élément.

L'ordre des éléments n'a pas d'influence sur I'impédance globale.
Les éléments peuvent étre de types différents (R, L ou C).
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Impédances complexes

Exemple. Tension sinusoidale de 100V d’amplitude a 50 Hz

1 L c
02H 40 uF
u(t) =100-sin(27 - 50 1) l() R sso U=2Z1

Z=R+ joL +L = R+j(mL—L) =55+ j(63-80)=55— /17 (QQ)
JjoC aC

La tension est déphasée de -17
degrés vis-a-vis du courant

- > -17
|Z‘ =+55"+17° =58 Q i =arcr‘g(¥) =-0.3rad

— f(t)—%-sin(27r-50-f+().3)

Le courant i(t) aura donc une valeur maximale de 1.72 A et sera déphasé de +17° par

rapport a la tension u(t).

Dans cet exemple, on remarque que I’association des 3 éléments induit un
déphasage entre le courant et la tension, de méme qu’une partie ‘résistive’ a

travers le module.
Si on change la fréquence, ces valeur vont également changer.
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Les Diagrammes de Bode
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QUADRIPOLE ELECTRIQUE LINEAIRE ET
FONCTION DE TRANSFERT

En électronique, on s'intéresse souvent au gain en tension d'un quadripole.

e W— —Y Y
O vl | F U [] %
|

Uyt polynome numérateur jw

H j — =
o) Uin, polynome dénominateur jw

H(jow) est appelée la fonction de transfert.

La fonction de transfert d’un quadripdle relie la tension de sortie a celle
d’entrée (on pourrait aussi relier les courants entre eux, voire tensions et
courants).

Lorsque I’excitation est sinusoidale, cette fonction de transfert va dépendre de
la fréguence.

Etant donné qu’une fonction de transfert est un nombre complexe (sauf si il
n’y a que des résistances), on peut la représenter en tragant son module, ce sera
I’amplitude, et sa phase.

Ces deux quantités sont & I’origine des diagrammes de Bode.
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FONCTION DE TRANSFERT ET DIAGRAMME DE BODE

Une fonction de transfert H(jo) est représentée graphiquement dans deux
diagrammes: les diagrammes de Bode:

| On y représente H(jm) par son module et par son argument (ou phase).

|H| 45 =201og|H| @ =arg(H)
Amplitude Phase
(décibels, dB) (radians ou degrés)
log(w) log(w)

Les logarithmes sont en base 10.
En abscisse, log(®) est généralement remplacé par m en échelle

logarithmique.

On utilise une représentation logarithmique lorsqu'une variable varie sur
plusieurs décades, ce qui est le cas en général de la fréquence et donc de la
pulsation (o = 2xf), ainsi que du module de H(jw).

Par contre la phase de H(jw) ne varie généralement que de quelques dizaines
de radians et sa représentation est mieux adaptée par une échelle linéaire.
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DIAGRAMME DE BODE DE FONCTIONS CHOISIES
Etude de la fonction de transfert: H (ja)) =Ajo/o,

Son module en dB est donné par

20|H(_ja))’ =20 log‘A (jo/o. )’ =
20log A+ 20log(w/w@, )

On remarque que la constante A se résume a un décalage 20 log (A).

On va donc étudier la fonction ‘de base’:

H(jo)= jo/o.

Nous allons tracer brievement quelques fonctions de transfert qui se
retrouveront dans les TP.

Commengons par la plus simple, H(jo)=jo/o,
®, est une constante positive.
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DIAGRAMME DE BODE D'UN TERME j&/®,

20 log[jw/m,| =20 logw — 20 logw,

|HI<IB
pente: +20dB/décade
0 o (log)
o arg(jo/o,) = +m/2
+m/2
0 0_'10) 0..2m,0.'fim:u,o.'."&coz (:3: 2'&)1 3.(:)z SI(n, ](;(Dz © (IOg)

z

Eno = o, jo/o,| =1, soit 0 dB.

Si o est multiplié par 10, alors |jo/m,| est multiplié par 10, soit +20 dB, d'ou la
pente de +20dB/décade.

jo/w, est purement imaginaire positif pour tout o, d'ou un argument constant
de +m/2.
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DIAGRAMME DE BODE DE FONCTIONS CHOISIES

1

Etude de la fonction de transfert: H(jo)=A———
I+ jo/o,

Son module en dB est donné par

|H (jo)| , =20|H (jo)|=20log

I+ jo/o,

20log A—20log [1° + a)z/wf, =2OlogA—lOlog(12+ a)z/a)f,)

On remarque que la constante A se résume a un décalage 20 log (A).

On va donc étudier la fonction ‘de base’:

1

H(jo)=——
(_/a)) I+ jo/o,

oy, est une constante positive.
Ce sera un péle de la fonction de transfert.
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DIAGRAMME DE BODE D'UN TERME 1/(1+ jo/®,)

20 log‘l/(l +‘j0);_;"'0)p)‘ :—2010g,{12 + wz/wz = —lOlog(12+ mz/mlzj)

O <<, o=, o >> @y,
20l0g(1) ~10log(1+1) -10log(®*/®,%)
I, 0dB -3dB 20log(,)—20log()
+20 -
0, T P ey —— ® (log)
- 0.1wp @p 3ay, Sa, 1(!(01)
pente: -20dB/déc
O
o
0 = T T T T w (lﬂg)
—id Zmp 3mp Smp l(gmp

arg(1/(1 + jo/w,)) = — arctg(w/w,)

y, est une constante positive.
Pour < o, |1/(1+jo/o,)| = 1, soit une demi droite a 0 dB a gauche de o,

Pour > o, |1/(1+jo/o,)| = [1/(jo/o,)|, soit une demi droite partant de 0 dB
en o, et descendant de 20dB/deécade pour w croissant.

Ces demi-droites sont appelées asymptotes. La courbe réelle suit assez
fidelement les asymptotes avec un écart maximal de -3 dB en ). La pulsation
du point de changement de pente des asymptotes est dite fréquence de
"'coupure’’.

Notons que arg ( ) = —arctg(w/wp)

1+jw/wp

La fonction —arctg(w/w,) peut étre approximeée par segments appelés
asymptotes:

—arctg(w/o,) = 0 pour ® < w,/10
—arctg(w/o,) = —1/2 pour ©® > 100,
—arctg(w/o,) = —(1+ log;o(w/w,)) /4 pour 0.1m, < ® < 10w,
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DIAGRAMME DE BODE DE FONCTIONS CHOISIES
Etude de la fonction de transfert: /H (/a)) = A(] H ,f(l)/wz)
Son module en dB est donné par

|H (jo)| , =20|H (jo)|=20log|l+ jo/o.|=

20log A+20log I’ + @*/ &’ :2OlogA+lOlog(l2 +a)2/a)__2>

On remarque que la constante A se résume a un décalage 20 log (A).

On va donc étudier la fonction ‘de base’:

H(jo)=1+ jo/o.
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DIAGRAMME DE BODE D'UN TERME 1+ jo/,

20log|H (jo)=[20log|1+ jo/w.|=20log I’ + @’ [0} =10log (I’ + &’ /o’ )

O <<, o=, ==,
20log(1) 10log(1+1) 10log(@?/,2)
0dB +3
H|yp 3dB 20log(®)—20log(®,)

7 pente: +20dB/déc

o (0g)

0.1w, 0.20,0.30,0.50, @, 2w, 3o, 5o, 10w,

- o (log)

T T T T T T T T
0.1, 0.20,0.30,0.5wm, @, 20, 3o, 5o, 10w,

®, est une constante positive.
Pour o < o,, |1+jo/o,| = 1, soit une demi droite a 0 dB a gauche de o,.

Pour > o,, |Ll+jo/o,| = [jol/o,|, soit une demi droite partant de 0 dB en o, et
montant de 20dB/décade pour o croissant.

Ces demi-droites sont appelées asymptotes. La courbe réelle suit assez
fidelement les asymptotes avec un écart maximal de +3 dB en w,. La pulsation
du point de changement de pente des asymptotes est dite de "coupure”.

La fonction arctg(w/m,) peut étre approximée par des segments:
arctg(o/w,) = 0 pour ©® < ®,/10

arctg(o/w,) = +1/2 pour ® > 10w,

arctg(o/w,) = (1+ log;o(w/®,)) n/4 pour 0.10, < ® < 10w,
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DIAGRAMME DE BODE - CONSTRUCTION

Jo /126 0 jf/20
1+ jo /1260 1+ 7 //200

H(jo)=10 0=21f

Hlgp :
|H (jeo )|
+40 - pente: +20dB/déc
+20
0 1 235 107203050 g0 20080500 ) 2k 3k Sk Q) 20K30k50k 100 20013001500k  y f[Hz]
-20

pente: -20dB/déc

Etant donné que 1’échelle en dB est le logarithme du module de la function de
transfert, le produit de termes deveint une somme ou une difference en dB.

La construction du diagramme de Bode s’effectuera donc en additionnant la
contribution des différentes termes qui se trouvent dans la function de

transfertexprimés en dB:

. j f/20
H (jo)=10—1/20_
(i0) =10~ f /200

20log|H ( jw)| = 20log(10) + 20log( f /20) —20log(1+ j f /200)
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L’ Amplificateur Opérationnel
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A QUOI RESSEMBLE UN ‘AMPLI-OP’ ?
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AMPLIFICATEUR OPERATIONNEL : LE MODELE ‘REEL’

L'amplificateur opérationnel est un dispositif ¢lectronique a deux entrées
et une sortie. Le potentiel de sortie est l'image trés amplifice de la
différence de potentiel des deux entrées.

Il est généralement alimenté par deux sources de tensions qui ne sont
pas représentées.

: oo dimimimas
— FV. Ve v
Uil v / at+
Vit 1 )
n Vm_l \\'uut u;
: 0
—\ \
Y o S —— .__ 7}/(:(:

saturation . l saturation

foative o ampli- it
— A _ —A. Loative sitive
Vour = A (Vin+ Vin—) A u; negative fication positive

avec Ay, > 10°

L'amplificateur opérationnel est un composant de base trés important, utilisé
dans de nombreux montages électroniques analogiques.

Il permet de réaliser de facon relativement simple des fonctions linéaires et
non-linéaires.

L'amplificateur opérationnel est réalisé a I'aide de quelques dizaines de
transistors et éléments passifs.

L'amplificateur opérationnel sera traité ici comme une boite noire dont on
connait les caractéristiques globales.
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AMPLIFICATEUR OPERATIONNEL : LE MODELE ‘IDEAL’

Le modele idéal de 'amplificateur opérationnel est :

* un gain ‘infini’ (dans la zone linéaire: V, < v . <V ..)
* des courants d'entrée nuls.

* une résistance de sortie nulle: v, est indépendant de i
possibilité de cascader plusieurs circuits sans interaction du suivant sur le précédent

out

(la source de tension commandée Ay, est ‘symbolique’)

v

7
out

Vit
n Vv

out

Vv

sat—

Les performances des amplificateurs opérationnels sont proches de la
définition de I'amplificateur opérationnel idéal.

La sortie de I'ampli-op impose un potentiel qui peut-étre positif ou négatif
(suivant que I’alimentation soit entre 0 et 10V, ou bien ‘symétrique’ entre -10
V et +10V, par exemple)

Ce potentiel de sortie est supposé indépendant du courant (le courant peut
étre sortant ou entrant) a cette borne.

La source fictive de tension v, incluse dans I'ampli-op, modélise I'effet des
composants internes, alimentés par une ou deux sources qui, en général, ne
sont pas représentées.
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L'aMPLI. OP. EN REACTION NEGATIVE

En réaction négative, c¢’est-a-dire en ramenant une image du signal de
sortie vers ’entrée -, le gain trés élevé implique que la différence de
tension u, entre les 2 entrées + et — sera quasiment nulle.

Contre Réaction
[ |-
I_I2 1 I
' (i=0)
1:
A—0 ) -
Uil _l — ~0 volt —
o _
{i+: D) out
VD'IH
Ve _
R —
———

Cette remarque sera trés utile : on peut résoudre les circuits en supposant
qu’il y a 0 volt entre V+ et V-

La contre reaction, qui consiste ici a ramener une image de la tension de sortie
sur I’entrée —, va induire un ‘auto-contréle’ du systéme qui va alors manitenir
une difference de tension négligeable entre les bornes + et - .

Ceci permet d’imposer la condition 0 volt entre les entrées + et — de
I’amplificateur opérationnel.

C’est un moyen de stabiliser I’amplificateur opérationnel et de I’utiliser
comme un des éléments de base dans la plupart des circuits analogiques.
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L'aMPLI. OP. EN REACTION NEGATIVE

Selon que le signal utile est appliqué vers I’entrée + ou -, la sortie prendra 2 valeurs
distinctes.

AO en mode Inverseur

AO en mode non-Inverseur

Une fois la réaction négative réalisée, la tension de sortie de I’amplificateur
opérationnel prendra des valeurs différentes selon que le signal d’entrée est
‘dirigé’ vers ’entrée + ou I’entrée - .

On parle respectivement de mode non-inverseur ou inverseur.
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L'aMPLI. OP. EN REACTION NEGATIVE

En résumé
AO en mode Inverseur

Vo= ,
v, l() lV ou =g

AO en mode non-Inverseur
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AMPLI OP EN REACTION NEGATIVE

‘Gain inverseur’

™~
V.

n2 1
V
Vinll l o
/ L
‘Gain non-inverseur’
Vour = GaiMyon_iny Vin1 + Gaingyy, Viya

R, R,
Vaut= 1+R_1 Vinl_ R_l VinZ

Le cas général peut étre étudié comme la superposition d'un amplificateur
non-inverseur et d'un amplificateur inverseur.

On peut démontrer que dans le cas général ou deux signaux sont
simultanément appliqués vers les entrées + et -, le signal de sortie est une
combinaison des gains inverseurs et non-inverseurs
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AMPLI. OP. - CARACTERISTIQUES
DYNAMIQUES.

La plupart du temps, les amplificateurs opérationnels s’utilisent en présence de
signaux de type sinusoidaux, comme par exemple pour I’audio.

Il devient donc nécessaire d’analyser ces circuits avec les impédances
complexes, mais aussi de s’intéresser aux limites intrinséques de ces
amplificateurs opérationnels.
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L'AMPLI. OP ET FONCTION DE TRANSFERT

En régime sinusoidal, on applique les formules habituelles, mais avec les
impédances complexes qui dépendront de la fréquence.

Z, Zy AO en mode Inverseur
v Z,
H ‘(/) - out Cr
dle S
l VOlll
Z, Z, AO en mode non-Inverseur

.
H(jo) = 2 =1+ 22

in 1

Il s’agit d’une généralisation de la notion d'amplificateur inverseur et non-
inverseur avec des impédances complexes a la place de résistances.

Par la suite, la fonction de transfert s’analyse de fagon habituelle et se
représente la aussi au moyen des diagrammes de Bode.
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L'AMPLI. OP ET FONCTION DE TRANSFERT

Cy 1.80F ‘inverseur’
1
\' RiJrjn)(': T YA RR c
. ﬂ + joR,C,
H(jo) = -2 i
R+ 1 1+J.valC,
JjoC, JjoC,
H(jo)=—— JORG
(1+ joR C)(1+ joR,C,)
H] 1/2aR,C, 1/2aR,C,
dB 23 Hz 20log(R4/R ;) 19 kHz
+204  1/27R,C, +13.4 dB

5 HZ/ \
0 —r —— —r— —r —r— —r
N S 10 2030 50 [0p 200300500 1k 2k 3k 5k ok 20k 30k S0k JW}; ™ f[HZ]

=201

Il s’agit d’un circuit qui atténue en dessous de 5 Hz ez au dessus de 100kHz,
avec un gain constant de 4.7 (13.4 dB) entre 20Hz et 19 kHz, ce qui
correspondrait a la gamme audio.
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L'AMPLIFICATEUR OPERATIONNEL INTEGRATEUR

Intégrateur inverseur

Lli=0 = UR =V, = ilz—
) .V
=0 = iy=1 =12
2 1 R
1.
uc =uc(0)+ EI 1,dt

1
out :uC(O)+R_CIViH dt

ui=0 = vy =-uc

1
Vour = Vout(o) - R_Cf Vi, dt

En régime sinus H(jw) = ==

Au dela de la réponse en fréquence sous I’effet d’un signal sinusoidal, il est
important d’étudier la réponse du montage ci-dessus lorsque la tension d’entrée
n’est pas hamonique.

Pour en déduire la tension de sortie, il faut analyser le circuit dans le temps avec
I’analyse ‘classique’, sans faire intervenir les impédances complexes car on
n’est plus en régime sinusoidal !

Un fois I’analyse faite, on voit que la tension de sortie varie comme 1’intégrale
de la tension d’entrée, d’ou le nom ‘intégrateur’.

- L'équation de la maille d'entrée:
Ur—Ui—Vip=0 => Ug=v;, => 3=V /R,
-Commei_=0,i; =1,

- L'équation de la maille de sortie:
Uo+ Vo F Ui =0 => vy, = —Ue = —Uc(0) — 1/C [ i,dt = v ,,(0) — 1/RC [ v, dt
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L'AMPLIFICATEUR OPERATIONNEL DERIVATEUR

Dérivateur inverseur

dv:
uy;=0 = uc=vy;, = 11=C Vin
dt
. dv;
=0 = 1p=1=C ;‘“
t
) dv;
Ur —R-lz =RC dm
t
dv;
u,=0 = v, =-ur=-RC d;n
= _ pc Yin
Vout - RC dt
En régime sinus H(jw) = Vour = _Zr = —jwRC
Vin ZC

En permutant résistance et capacité, on réalise en sortie une function qui
représente la dérivée du signal d’entrée.
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EFFET DU SLEW RATE SUR LES MONTAGES A AMPLI OP

La tension de sortie présente une vitesse de variation dv,,,/dt qui est limitée.

L’ampli op est aussi caractérisé par cette ‘dynamique’: SR (Slew Rate) en V/ys.

\,UIH( l)
""" : réelle :* /—
..... lvom .

f&\
7~

V(\llt([)

La pente de v, (en valeur absolue)
ne peut pas dépasser le Slew Rate.

~-

La déformation provoquée par le Slew
Rate est un phénomene non-linéaire qui
dépend aussi de I'amplitude du signal de
sortie.

\vmll(['

A cause de leur structure interne, les amplificateurs opérationnels ont aussi une
limitation de la vitesse de variation de la tension de sortie appelé Slew Rate.
Les fabricants spécifient ce Slew Rate : SR = (dv,,/dt)., en V/us.

La dérivee de la tension de sortie, c'est a dire la pente de v, dans une
représentation temporelle, ne peut pas excéder une limite appelée Slew Rate,
que I'on considere généralement symétrique a la montée et a la descente.

La dérivée d'un signal dépend de sa forme, de sa fréquence et de son

amplitude.
Un probleme courant est celui d'un amplificateur qui, testé avec un signal
donné, semble fonctionner correctement, alors que ce méme signal, mais avec

une amplitude supérieure, sera distordu.
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