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Plusieurs dipôles de même type en série peuvent se réduire à un seul élément.

Des résistances en série s'additionnent.

Des capacités en série s’additionnent ‘en inverse’.

Des inductances en série s'additionnent.

(l’ordre des connexions est donc sans importance )
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Plusieurs dipôles de même type connectés en parallèle peuvent se réduire à un 

seul.

Des résistances en parallèle ‘se somment’ en inverse.

Des capacités en parallèle s'additionnent.

Des inductances en parallèle ‘se somment’ en inverse.

L'ordre de connexion des éléments en parallèle n'a pas d’importance.
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Tout circuit peut se résoudre en imposant la loi des mailles (somme des 

tensions le long d’un parcours fermé =0 ) et la loi des noeuds (somme des 

courants qui arrivent en un noeud =0 ), avec bien entendu les relations qui lient

courant et tension pour chaque composant.

Dès lors que le nombre d’équations indépendantes est égal au nombre

d’inconnues (tensions ou courants), le système peut se résoudre.

Cette approche peut s’avérer laborieuse dès que les circuits impliquent

plusieurs sources.
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Le théorème de superposition énonce une propriété fondamentale des systèmes 

linéaires qui s’avère être un outil très efficace pour résoudre simplement des 

circuits non-triviaux:

En essence, le théorème énonce que la réponse d’un système à une somme 

d'excitations est égale à la somme des réponses dues à chaque excitation 

prise séparément.

Pour cela, il faut ‘annuler’ l’effet de certaines sources d’excitation.
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Principe:

On décompose le circuit initial composé de deux sources en deux circuits 

composés d’une source unique.

Dans cet exemple, l'effet sur US de la source de tension U1 est déterminé en 

annulant la source de tension U2 qui sera remplacée par un court circuit.

De même, l'effet sur US de la source de tension U2 est déterminé en annulant 

la source de tension U1 qui sera remplacée par un court circuit.
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La somme de chaque contribution donne le même résultat que la méthode

initiale.

Dans ce cas précis, l’avantage n’est pas évident, mais si par exemple on

décidait d’ajouter dans le circuit une source de tension supplémentaire (avec 

une résistance par exemple), la resolution par superposition serait bien plus 

simple.
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Losrqu’une tension sinusoidale est appliquée aux bornes d’une capacité ou

d’une inductance, le courant induit va subir un déphasage vis à vis de la 

tension. Algébriquement, ceci s’explique par l’introduction de la function 

dérivée (pour la capacité) ou intégrale (pour l’inductance) qui vont transformer 

un sinus en cosinus et réciproquement.

Pour la capacité, le courant est déphasé de +90° vis à vis de la tension, tandis

que pour l‘inductance ce sera -90°

En régime sinusoidal on peut introduire la notion d’impedance notée Z, qui est

une notion généralisée de la résistance lorsqu’on utilise les nombres

complexes.

Cette impedance a donc non seulement un module, mais égalememt une phase. 

Ces deux quantités peuvent dépendre de la fréquence d’excitation.
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En notation complexe, pour les trois types de dipôles linéaires passifs, la loi 

d'Ohm s’écrit en terme de phaseurs U = Z·I.

Le paramètre Z est appelé impédance.

L'impédance d'une résistance est réelle positive.

L'impédance d'une inductance est purement imaginaire positive.

L'impédance d'une capacité est purement imaginaire négative.
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Loi des mailles:

Le long d'un trajet fermé, la somme complexe des phaseurs de tension est 

nulle.

Loi des noeuds:

La somme complexe des phaseurs de courant qui arrivent en un noeud est 

nulle.

Rappel:

Si une somme de grandeurs complexes est nulle,  la somme des parties réelles 

est nulle, de même que la somme des parties imaginaires.
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L'impédance globale d'éléments en série (traversés par le même courant) est la 

somme des impédances de chaque élément.

L'ordre des éléments n'a pas d'influence sur l'impédance globale.

Les éléments peuvent être de types différents (R, L ou C).
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Dans cet exemple, on remarque que l’association des 3 éléments induit un 

déphasage entre le courant et la tension, de même qu’une partie ‘résistive’ à 

travers le module.

Si on change la fréquence, ces valeur vont également changer.
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La fonction de transfert d’un quadripôle relie la tension de sortie à celle 

d’entrée (on pourrait aussi relier les courants entre eux, voire tensions et 

courants).

Lorsque l’excitation est sinusoïdale, cette fonction de transfert va dépendre de 

la fréquence.

Etant donné qu’une fonction de transfert est un nombre complexe (sauf si il 

n’y a que des résistances), on peut la représenter en traçant son module, ce sera 

l’amplitude, et sa phase. 

Ces deux quantités sont à l’origine des diagrammes de Bode.
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On utilise une représentation logarithmique lorsqu'une variable varie sur 

plusieurs décades, ce qui est le cas en général de la fréquence et donc de la 

pulsation (w = 2πf), ainsi que du module de H(jw).

Par contre la phase de H(jw) ne varie généralement que de quelques dizaines 

de radians et sa représentation est mieux adaptée par une échelle linéaire.
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Nous allons tracer brièvement quelques fonctions de transfert qui se 

retrouveront dans les TP.

Commençons par la plus simple, H(jw)=jw/wz

wz est une constante positive.
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En w = wz, |jw/wz| = 1, soit 0 dB. 

Si w est multiplié par 10, alors |jw/wz| est multiplié par 10, soit +20 dB, d'où la 

pente de +20dB/décade.

jw/wz est purement imaginaire positif pour tout w, d'où un argument constant 

de +π/2.
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wp est une constante positive.

Ce sera un pôle de la fonction de transfert.
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wp est une constante positive.

Pour w < wp, |1/(1+jw/wp)| ≈ 1, soit une demi droite à 0 dB à gauche de wp.  

Pour w > wp, |1/(1+jw/wp)| ≈ |1/(jw/wp)|, soit une demi droite partant de 0 dB  

en wp et descendant de 20dB/décade pour w croissant.

Ces demi-droites sont appelées asymptotes. La courbe réelle suit assez 

fidèlement les asymptotes avec un écart maximal de –3 dB en wp. La pulsation 

du point de changement de pente des asymptotes est dite fréquence de 

"coupure".

Notons que 𝑎𝑟𝑔
1

1+𝑗 Τ𝜔 𝜔𝑃
= −𝑎𝑟𝑐𝑡𝑔 Τ𝜔 𝜔𝑃

La fonction –arctg(w/wp) peut être approximée par segments appelés 

asymptotes:

–arctg(w/wp) ≈ 0 pour  w < wp/10

–arctg(w/wp) ≈ –π/2 pour  w > 10wp

–arctg(w/wp) ≈ –(1+ log10(w/wp)) π/4 pour 0.1wp < w < 10wp

1-22



1-23



wz est une constante positive.

Pour w < wz, |1+jw/wz| ≈ 1, soit une demi droite à 0 dB à gauche de wz.  

Pour w > wz, |1+jw/wz| ≈ |jw/wz|, soit une demi droite partant de 0 dB en wz et 

montant de 20dB/décade pour w croissant.

Ces demi-droites sont appelées asymptotes. La courbe réelle suit assez 

fidèlement les asymptotes avec un écart maximal de +3 dB en wz. La pulsation 

du point de changement de pente des asymptotes est dite de "coupure".

La fonction arctg(w/wz) peut être approximée par des segments:

arctg(w/wz) ≈ 0 pour  w < wz/10

arctg(w/wz) ≈ +π/2 pour  w > 10wz

arctg(w/wz) ≈ (1+ log10(w/wz)) π/4 pour 0.1wz < w < 10wz
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Etant donné que l’échelle en dB est le logarithme du module de la function de

transfert, le produit de termes deveint une somme ou une difference en dB.

La construction du diagramme de Bode s’effectuera donc en additionnant la 

contribution des différentes termes qui se trouvent dans la function de 

transfertexprimés en dB:

( )
 20

10
1  200

j f
H j

j f
w =

+

( )20log 20log(10) 20log( 20) 20log(1  200)H j f j fw = + − +
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L'amplificateur opérationnel est un composant de base très important, utilisé 

dans de nombreux montages électroniques analogiques.

Il permet de réaliser de façon relativement simple des fonctions linéaires et 

non-linéaires.

L'amplificateur opérationnel est réalisé à l'aide de quelques dizaines de 

transistors et éléments passifs.

L'amplificateur opérationnel sera traité ici comme une boîte noire dont on 

connaît les caractéristiques globales.
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Les performances des amplificateurs opérationnels sont proches de la 

définition de l'amplificateur opérationnel idéal.

La sortie de l'ampli-op impose un potentiel qui peut-être positif ou négatif 

(suivant que l’alimentation soit entre 0 et 10V, ou bien ‘symétrique’ entre -10 

V et +10V, par exemple)

Ce potentiel de sortie est supposé indépendant du courant (le courant peut 

être sortant ou entrant) à cette borne.

La source fictive de tension vout , incluse dans l'ampli-op, modélise l'effet des 

composants internes, alimentés par une ou deux sources qui, en général, ne 

sont pas représentées. 
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La contre reaction, qui consiste ici à ramener une image de la tension de sortie 

sur l’entrée – , va induire un ‘auto-contrôle’ du système qui va alors manitenir

une difference de tension négligeable entre les bornes + et - .

Ceci permet d’imposer la condition 0 volt entre les entrées + et – de 

l’amplificateur opérationnel.

C’est un moyen de stabiliser l’amplificateur opérationnel et de l’utiliser

comme un des éléments de base dans la plupart des circuits analogiques.
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Une fois la réaction négative réalisée, la tension de sortie de l’amplificateur 

opérationnel prendra des valeurs différentes selon que le signal d’entrée est 

‘dirigé’ vers l’entrée + ou l’entrée - .

On parle respectivement de mode non-inverseur ou inverseur. 
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On peut démontrer que dans le cas général où deux signaux sont 

simultanément appliqués vers les entrées + et - , le signal de sortie est une 

combinaison des gains inverseurs et non-inverseurs
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La plupart du temps, les amplificateurs opérationnels s’utilisent en présence de 

signaux de type sinusoïdaux, comme par exemple pour l’audio.

Il devient donc nécessaire d’analyser ces circuits avec les impédances 

complexes, mais aussi de s’intéresser aux limites intrinsèques de ces 

amplificateurs opérationnels.
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Il s’agit d’une généralisation de la notion d'amplificateur inverseur et non-

inverseur avec des impédances complexes à la place de résistances.

Par la suite, la fonction de transfert s’analyse de façon habituelle et se 

représente là aussi au moyen des diagrammes de Bode.
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Il s’agit d’un circuit qui atténue en dessous de 5 Hz ez au dessus de 100kHz, 

avec un gain constant de 4.7 (13.4 dB) entre 20Hz et 19 kHz, ce qui 

correspondrait à la gamme audio.
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Au delà de la réponse en fréquence sous l’effet d’un signal sinusoïdal, il est 

important d’étudier la réponse du montage ci-dessus lorsque la tension d’entrée 

n’est pas hamonique.

Pour en déduire la tension de sortie, il faut analyser le circuit dans le temps avec 

l’analyse ‘classique’, sans faire intervenir les impédances complexes car on 

n’est plus en régime sinusoïdal !

Un fois l’analyse faite, on voit que la tension de sortie varie comme l’intégrale 

de la tension d’entrée, d’où le nom ‘intégrateur’.

- L'équation de la maille d'entrée:

uR – ui – vin = 0    =>    uR = vin =>    i1 = vin/R1

- Comme i– = 0, i1 = i2 

- L'équation de la maille de sortie:

uC + vout + ui = 0    =>    vout = –uC = –uC(0) – 1/C  i2dt = vout(0) – 1/RC  vindt
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En permutant résistance et capacité, on réalise en sortie une function qui 

représente la dérivée du signal d’entrée.
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A cause de leur structure interne, les amplificateurs opérationnels ont aussi une 

limitation de la vitesse de variation de la tension de sortie appelé Slew Rate. 

Les fabricants spécifient ce Slew Rate : SR = (dvout/dt)max en V/s.

La dérivée de la tension de sortie, c'est à dire la pente de vout dans une 

représentation temporelle, ne peut pas excéder une limite appelée Slew Rate, 

que l'on considère généralement symétrique à la montée et à la descente.

La dérivée d'un signal dépend de sa forme, de sa fréquence et de son 

amplitude. 

Un problème courant est celui d'un amplificateur qui, testé avec un signal 

donné, semble fonctionner correctement, alors que ce même signal, mais avec 

une amplitude supérieure, sera distordu. 
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